
Algorithmic plants
Andrea Valente

aval@sdu.dk
SDU Kolding

How do natural plant grow?

• (and perhaps, can we simulate and draw them with a program?)
• Plants are often self-similar:

e.g. a fern is made of smaller ferns, …

From plant to model

• We can use self-similarity to “simplify” the structure of a tree or plant:
• we get a model
• similar trees might have the same simplified model,
• different trees will have different models

1

model model

1

And what about time? Growth?

• We can define a model of a simple plant, and make it grow in steps

. . .

Growing in 2 phases

• There seem to be 2 phases in the growth of a plant:
1. Getting taller and/or larger, i.e. growing
2. Creating more branches, i.e. branching (still keeping self-similarity)

. . .

sprout

branching growing branching This could get a bit repetitive…

If we had a more precise way to
describe and draw these plants,
a program could do it for us and

fast!!

Enter: L-systems

• Lindenmayer systems (or L-systems) were conceived as a mathematical
theory of plant development
• L-systems were introduced and developed in 1968 by Aristid Lindenmayer, a

Hungarian theoretical biologist and botanist at the University of Utrecht.
• Lindenmayer used L-systems to describe the behaviour of plant cells and to model

the growth processes of plant development
• L-systems have also been used to model the morphology of a variety of

organisms and can be used to generate self-similar fractals
• Morphology: the study of the form and structure of organisms and their specific

structural features

• Sources:
• http://algorithmicbotany.org/papers/#abop
• https://en.wikipedia.org/wiki/L-system
• https://en.wikipedia.org/wiki/Morphology_(biology)

An L-systems is defined by symbols and rules

• Imagine that our plan is created by using cards (AKA symbols):

• a sprout card , its symbol could be X

• and a trunk card and its symbol can be F

• And some rules to replace (AKA rewrite) the cards:
• start with X

• X -becomes-> F[+X][-X]

• F -becomes-> FF

->

->

Rules
expresses

visually

Growing the plant = rewrite the symbols

• The L-system separates the DESCRIPTION of a plant
from how it LOOKS
• we rewrite the symbols to simulate the plant’s growth,
• then we draw the plant, from the symbols

• Rewriting works this way:
• Start with a symbol X
• Look at every symbol:

if it matches the left-part of a rule,
then change that symbol with the right-part of the rule

• Then repeat the last step, until you are happy whit your plant! ;)

• Example:
X => F[+X][-X] => FF[+F[+X][-X]][-F[+X][-X]] => . . .

Rules
Start with X
X > F[+X][-X]
F > FF

Left
part Right

part

Can you SEE what
it would look like?

Growing the plant (step by step)

• Rewriting works this way:
• Start with a symbol X
• Look at every symbol:

if it matches the left-part of a rule,
then change that symbol with the right-part of the rule

• Then repeat the last step, until you are happy whit your plant! ;)

• Example:

X => F[+X][-X]

then:

F[+X][-X] => FF[+F[+X][-X]][-F[+X][-X]] => . . .

Rules
Start with X
X > F[+X][-X]
F > FF

Left
part Right

part

FF

F[+X][-X] F[+X][-X]

->

->

Right
part

Left
part

How to draw a plant, from its description

• We start from the text:
X => F[+X][-X] => FF[+F[+X][-X]][-F[+X][-X]] => . . .

• And interpret:
• X as a sprout card
• F as a trunk card
• + as a turn of 45 degrees , - as a counter-clock turn of 45 degrees
• [as start a branch, and] as start go back to the last branch

• Example: let’s draw F[+X][-X]

Description

That’s how
it looks!

print m
e

:)
print m

e
:)

print m
e

:)

Let’s try together…

• Let’s draw this text plant: FF[+F[+X][-X]][-F[+X][-X]]

How does it
looks?

How does it
looks?

Description That’s how
it looks!

time

FF[+F[+X][-X]][-F[+X][-X]]

F[+X][-X]

X

=>
=>

=>

... a very long text ...

Alternative way to draw a text plant

• Use a pen! :D

FF[+F[+X][-X]][-F[+X][-X]]

F[+X][-X]

X

=>
=>

=>

...

LOGO – a turtle with a pen

• LOGO programming language
• You control a turtle on screen
• It has a pen, can lift it or put it down

• The commands are:
Forward 10 steps or F 10
Rotate Right 90 degrees or R 90
Rotate Left 45 degrees or L 45

• Example of shapes you can draw
using LOGO

Could I instruct the
computer draw the

tree for me?

LOGO with simpler instructions

• We can simplify LOGO instructions even more:
• We can decide that we work with fixed length of 10 steps

and fixed angle of 60 degrees

• And the instructions could be super simple:
• F could be forward length steps (here 10)
• + could be turn right angle degrees (in this case 60 degrees)

• What will the turtle draw with the following instructions:
• F + F - - F + F ??

F + F - - F + F

”Be the turtle”
• What will the turtle draw with the following instructions:

• F + F - - F + F ??
given and angle of 120 degrees for + and -

• But if we change the angle to 90 degrees, and draw the same instructions?

120°

“Be the turtle” … with this L-system

• Let’s consider a simpler L-System, with only 1 rule:
X > FF[+X]-F

• Do this:
1. Start with X, then rewrite 2 times (AKA grow the text plant 2 steps)
2. Now, draw each plant description using the LOGO turtle method (AKA a

pen).
Let’s fix the angle at 30 degrees (circa), so + is 30 deg. and – is -30 deg.

Results (?)

• … tell me what you’ve got …

1. first the rewriting steps

2. then… what does your plant look like?

So, to create algorithmic plants, we just need

• A set of rules
• E.g.

• then we just match and rewrite using the rules

• A way to draw the text plants
• we need to decide about a fixed angle for the rotations,
• then:

• we can use our cards

• or we can read the text plant as a list of LOGO instructions

start with X
X > F[+X][-X]
F > FF

X => F[+X][-X] => FF[+F[+X][-X]][-F[+X][-X]] => . . .

A program to play with L-systems

I would like a program that:
1. Let’s me define my L-System (AKA write some rules)

2. Then it automatically:
• Rewrites a few times, to get a sequence of plant descriptions
• And for each, use a LOGO turtle to draw the look of a growing plant

Program in p5.js
• In your browser, open https://editor.p5js.org/andrea270872/full/3Z0R3PxZW
• Let’s try out:

• System 1:
X>F
F>F[-F]F[+F]F

Set the ”angle” to 25 and ”forward” to 3, then play with the params to create alternative looks
• System 2:

X>F
F>FF+[+F-F-F]-[-F+F+F]

Set the ”angle” to 22.5 and ”forward” to 4, then play with the parameters
• System 3:

F>FF
X>F[-X][+X]

Set the ”angle” to 30 and ”forward” to 9, then play with the parameters.
Use the ”save snapshot” button, to create an ”animation” of your plan, as the params change.

• If you are interested in the code, it’s Javascript with the P5.js library:
https://editor.p5js.org/andrea270872/sketches/3Z0R3PxZW

Scan me!

More L-Systems you might want to try…

• They are expressed a bit differently…
• Can you find out how to write them in our program?

Program in Scratch

• In Scratch
https://scratch.mit.edu/projects/9
69810191/editor/
• This program is simpler than the

other,
but if you know Scratch it might be
more readable

• The code does this -------->

[+X]

F

[-X]

Rules:
start with X
X -> F[+X][-X]

Questions?

Other applications of L-Systems

• 3D plants:
https://apps.simshadows.com/3d-lsystems-explorer/

• For 3D printing:
https://coudre.studio/projects/printed-l-systems/

• Music
(scientific paper https://www-users.york.ac.uk/~ss44/bib/ss/nonstd/eurogp05.pdf)
https://www.youtube.com/watch?v=TgIUGcTK2FU [video]

• Graphic tool Houdini
https://www.youtube.com/watch?v=8jYNmf1VzsQ

More info

• A intro good video https://www.youtube.com/watch?v=feNVBEPXAcE

• Classic Book: https://en.wikipedia.org/wiki/The_Algorithmic_Beauty_of_Plants
• FREE PDF: http://algorithmicbotany.org/papers/abop/abop.pdf

• Research paper (with great visual explanations and illustrations):
http://algorithmicbotany.org/papers/sigcourse.2003/2-1-lsystems.pdf

• Article about L-systems
https://medium.com/@hhtun21/l-systems-draw-your-first-fractals-139ed0bfcac2

Solution

“Be the turtle” … with this L-system

X => FF[+X]-F
=> FF[+FF[+X]-F]-F

=> FF[+FF[+FF[+X]-F]-F]-F
=> FF[+FF[+FF[+FF[+X]-F]-F]-F]-F

=> . . .

=> => => . . .

